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INTRODUCTION

One of the difficulties faced in the analysis of structural/geo-

technical systems is numerically modeling a semi-infinite domain. The

finite element method (FEM) provides an effective numerical tool for

modeling complex constitutive relations which characterize soil behaviors;

however, since the FEM is domain-based, it has difficulty modeling the

semi-infinite domain. Simply truticating the domain at some arbitrary

distance can result in the reflection of strain energy from the artifi-

cial boundary which should continue to be transmitted into the semi-

infinite domain. The reflected energy can contaminate the near field

region where the solution is of interest.

Considerable effort has been devoted to developing "silent" or

transmitting boundaries in the frequency domain which allow for the

outward radiation of energy (see e.g., Waas, 1972; Lysmer and Waas,

1972; Kausel, Roesset, and Wass, 1975; Bettess and Zienkiewicz, 1977;

Karasudhi and Rajapakse, 1984). However, frequency domain solutions are

limited to linear analyses.

Lysmer and Kuhlemeyer (1969) developed viscous boundaries in an

early attempt to provide a "silent boundary." These boundaries are

simple and can be used in both time and frequency domains. However,

they act as perfect absorbers only for a limited class of problems.

Cohen and Jennings (1983) give an exceiieit review of the different

efforts made to provide a "silent boundary."

In recent years, the boundary elemen method (BEM) has become a

strong candidate for use in the analysis of striictural/geotechnical

systems since it ifhlrontly rat fi h, rrid4 itPn boundary rcnditioii.

In this study we concentrate on coupled soliiLion approaches where boun-

dary elenent methods are combined with the finite element method. The

boundary element method is used to model Lh, semi-infinite or infinite

domain. In particular, we consider BEM formulations based upon the



Stokes solution -- the analytical solitfon for a time varying con-

centrated load in an infinite domain.

Objectives

The objectives of this report are to provide: (1) the necessary

analytical and numerical background for time domain boundary element

methods based on Stokes's solution, and (2) a coupling algorithm for

combining the BEM with the FEM.

The ultimate objective of this research is to determine an effec-

tive numerical scheme for modeling nonliinear, dynamic structural/geo-

technical problems which have infinite domains.

Background

The use of integral equation formulations in the analysis of tran-

sient phenomena in solids and fluids dates back over 100 years to the

lelmholtz-Kirchoff integral formula, according to Manolis (1984). This

formula is the mathematical description of Hygens' principle (Baker and

Copson, 1939).

Though integral equation statements of wave propagation phenomena

have existed for many years, their numerical approximation has occurred

relatively recently. Among the early efforts were the works of Friedman

and Shaw (1962) and Chen and Schweikert (1963) in acoustics, and Banaugh

and Goldsmith (1963) in steady-state olastodynamics. Cruse and Rizzo

(1968) and Cruse (1968) were the first to npply the BEM to transient

elastodynamic problems. Their papers considered the BEM in conjunction

with a Laplace transformation to solve a half-plane wave propagation

problem. Other researchers considered methods using the Fourier trans-

formation instead of the Laplace transformation (see e.g., Niwa, Kobayashi,

and Azuma, 1975; Niwa, Kobayashi, and Fuk,,f, 1976). Shaw (1985) gives

an overview of many different BEM formulations in elastodynamics.

The transformation methods have been highly developed, but to

address problems where the FEM region is characterized by nonlinear
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behavior we must consider time domain approaches. Three time domain

approaches have been pursued. They differ in one of the most basic

aspects of the BEM -- the fundamental singular solution. The two sim-

pler approaches are based on fundamental singulAr solutions for elliptic

partial differential equations instead of the actual hyperbolic equations.

One of the approaches approximates the time derivatives by finite

difference (see e.g., Brebbia and Walker, 1980). The resulting partial

differential equation is solved by the boundary element method at each

time step. This method requires domain integrations of previous time

step displacement fields because of the finite difference approximation;

thus it would appear to have limited application for problems with semi-

infinite or infinite domains.

Another approach uses the Kelvin solution of elastostatic BE formu-

lations. The main idea behind this approach is to approximate the inertia

effects by expanding the displacement field throughout the domain in

terms of a special set of expansion functions. This approximation is

only used for the inertia terms and the expansion functions are neces-

sarily simple allowing the domain integration to be written in terms of

boundary integrations. Nardini and Brebbia (1982) first developed this

approach and then followed with several applications (Nardini and Brebbia,

1983 and 1986).

Later Ahmad and Banerjee (1986) used the concepts of complementary

functions and particular integrals to solve the free vibration problem

in elastodynamics. Though the derivation of their approach is different

than the previous work by Nardini and Brebbia, the resulting system of

equations is almost identical. The reader is advised to verify the com-

parisons made in this later work. Both of these approaches have been

applied effectively to bounded domain problems; however, I am unaware of

any work which has successfully applied them to unbounded domain problems.

The most rigorous time domain approach is based upon the fundamental

solution of elastodynamics -- the Stokes solution. This appears to be

the best suited approach for handling infinite domains. The fundamental

solution satisfies the radiation boundary conditions, and for quiescent

initial conditions with no body forces, the method requires no domain

integrations. However, its formulation includes a convolution of the

time variable and thus appears to be comp~itationally intense.

3



Attempting to provide a morn efficient solution to problems with

infinite domains, researchers (see e.g., Geers, 1983) have developed

simplified BEN formulations known as doubly asymptotic approximations

(DAA). Mita and Luco (1987) give an overview of the different BEM and

coupled FEM-BEM approaches which have been used to study the dynamics of

embedded foundations.

Scope

The scope of this work is limited to a discussion of time domain

BEMs which are based on the use of the Stokes solution. Both analytical

and numerical aspects of the formulations are presented. The analytical

roots of the formulations are presented in some detail; this provides a

strong background for future implementation. The emphasis is on the

direct BEM formulation but the indirect BEM is also presented. The

coupling algorithm treats the BEM region as a nonlinear boundary con-

dition for the FEM region. Equilibrium and displacement compatability

on the interface between the regions is satisfied in a nodal sense using

an iterative scheme.

THEORY

This section presents the analytical basis for time domain BEMs

based on the Stokes solution. The Nomenclature at the end of this report

presents an additional explanation of some of the symbols used in this

section. For additional detail the interested reader could see, for

example, Eringen and Suhubi's (1974, 1975) excellent texts on elasto-

dynamics. The later text is the main roforence for this section.

The motivation for coupling the FE nnd RE methods to solve a

boundary-initial value problem, is to apply each method to that portion

of the domain for which it is best suited (see Figure 1). The finite

element method in this formulation will he applied to a subdomain 9F

which includes all portions of the domain that. are nonlinear, inhomo-

geneous, or anisotropic. The boundary oloment. method in this tormu-

lation will be applied to a subdomain 9 which will be idealized as

4



consisting of a homogeneous, isotropic, linear elastic material subjected

to small displacements and deformations. The strength of the BEM is its

inherent ability to model infinite domains. The following section presents

the governing equations for QB __ the equations of linear elastodynamics.

For brevity, QB will be denoted as Q since the following sections only

address the boundary element subdomain.

Elastodynamics Problem

Field Equations. The governing equations of motion are given by:

jij .+i = pi (la)

0.. = 0.. (lb)
ij ii

and the compatibility or kinematic equations are given by:

C (u= 1 i uj~ (2)Ai 2 j+ uj,i

The BE subdomain is assumed to be an isotropic homogeneous linear

elastic material. Thus the governing constitutive relations, generalized

Hook's law, are given as:

0ij = 2jij +XS kkij (3)

where X and p are Lam6's constants expressed in terms of Young's modulus

(E) and Poisson's ratio () as

Ev E
(l+v) (1-2v) ' 2(v)(4

Alternatively, the equations of motion (Equation 1), compatibility

relations (Equation 2), and constitutive relations (Equation 3) can be

combined into a linear system of hyperbolic differential equations in

terms of displacement as:

Vu ij + (X+P)uj.ji + 0i = pii, (5)

! P •



These are the well known Navier equat ions of elastodynamics. These

equations are often written in a slightly different form which introduces

some of the complications that occur with vector hyperbolic equations.

The Stokes-l[elmholtz resolution theorem states that every sufficiently

smooth vector field f(x,t) may be decomposed into irrotational and

solenoidal parts; that is, it admits the representation:

f = Vf + V x F (6)

where the first term is curl free and the second term is divergence free.

Applying this to both the displacement and body force vector fields we

can write:

P S P S
u = u + u , u = V , u = V x x (7a)

and

Y = Vf + V x F (7b)

where the scalar valued function, 0, and the vector valued function, X,

are the Lamt& potentials (Eringin and Suhubi, 1975). Substituting these

relationships into Equation 5 can show that. the Navier equations are
P uS

satisfied if u and u satisfy:

2 2P ..P 2 2S ..S(8
CpV u + Vf = u , C2V u + V x F = u (8)
P - -- S - - - -

respectively. In the absence of body forces, these equations yield the

familiar vector wave equations for irrotational and equivoluminal wave

propagation, respectively. These waves propagate with velocities given

by:

C = X+2p , C= (9)

Noting that X and V are positive implies that C > CS and, thus,

the rationale for the subscripts: P for 'primary' corresponding to the

faster wave, and S for 'secondary' corresponding to the slower wave. In

addition to irrotational and primary, the P waves are referred to as:

6



dilational, pressure, compressional, and longitudinal waves. In addition

to equivoluminal and secondary, the S waves are referred to as: distor-

tional, shear, and transverse waves.

Navier's equations are otLen written in terms of these wave speeds

as:

Cs2,1 + C2 - C2u, + T. ii (10)S ijj ! S) j i'3 I

The equations of motion, kinematic relations, and constitutive rela-

tions govern the problem ow r the domain except for singular surfaces

where special jump conditions must be satisfied. The wave front of a

shock wave is an example of a singular surface. For additional details

on singular surfaces and the corresponding jump conditions see Eringen

and Suhubi (1974).

Initial Conditions. The initial condit ions give the displacement

and velocity field throughout the domain as:

6i(x,O) V .(x) x E (llb)

Boundary Conditions. The boundary conditions are given by:

t.(x ,t) = i(x,t) x c r t. E 10,-) (12b)

where Qi(x,t) and (x,) are prescribed distributions of boundary displace-

ments and tractions as a function of time. The simple notation does not

imply that the boundary conditions are mtually exclusive; the fully-mixed

boundary value problem is addressed.

Radiation Boundary Conditions. ff the domain is unbounded, physics

places constraints on the behavior of the fields at infinity. Physical

reasoning suggests that if the applied loading is restricted to a finite

7



region, waves propagating from infinity into the interior of the domain

should not exist.

Radiation boundary conditions are attributed to Sommerfeld (1949).

He suggests the necessity of such a condition in the following discussion:

... oscillation problems (in constrast. to potential problems) are

not determined uniquely by their prescribed sources in the finiLe

domain. This paradoxical result shows that the condition of

vanishitig at infinity is not sufficient, and that we have to

replace it by a stronger condition at: infinity. We call it the

condition of radiation: the sources must be sources, not sinks of

energy. The energy which is radiated from the sources must scatter

to infinity; no energy may be radiated from infinity into the pre-

scribed singularities of the field."

Regardless of whether we are seeking a closed form or a numerical

solution, the radiatioT. condition provides the same essential property

to our solution -- uniqueness.

It can be proven (Eringen and Suhubi, 1975) that the radiation con-

ditions of elastodynamics are direct consequences of the radiation con-

ditions on wave equations (Equation 8). The radiation conditions of

elastodynamics can be stated as:

lim r [J + PCp(auP/at)] = 0 (13a)
r400

lim r [tS + pCs(3uS/at)I = 0 (13b)
r ft

where tP and tS are traction vectors on a sphere of radius r, due to the
P S

displacement components u and u respectively. These conditions are

sufficient to guarantee that at infinity there will only be an outward

flow of energy; that is, reflections are Piiminated.

8



Integral Equation Formulations

This section presents the integral equations on which both the direct

and indirect BEMs are based. Only the equations for the direct formula-

tion are developed in detail. The development of the direct formulation

in elastodynamics strongly parallels the development in elastostatics;

the two major components are a fundamental singular solution and a re-

ciprocal theorem. Kelvin's solution is replaced by Stokes's solution,

and Betti's reciprocal theorem is extended to Graffi's theorem.

Elastodynamic State. Prior to presenting Stokes's solution and

deriving Graffi's theorem, it is useful to have the definition of

elastodynamic state as given by Eringen and Suhubi (1975, Section 5.7).

Let Q be a spacial region with boundary r, and T a time interval.

If u and a are, respectively, a vector-valued and a symmetric second-

order tensor-valued function defined on Q x T, we call the ordered pairs

y = [u,o] an elasto~ynamic state on Q x T with the displacement field u

and stress field a, corresponding to a body force density 1, mass density

p, irrotational wave speed Cp, and equivoluminal wave speed CS, provided

that:

(a) u E C2 2 (9 x T), E C 1,1(r x T), o c C0 0 (Q x T),

as C C c0 '0 (Q x T), p > 0, Cp > 2/V3 CS > 0 (14)

(b) u, , , p, Cp, 8!. S satisfy the governing Equations 1, 2,
and 3.

The class of all elastodynamic states satisfying the above conditions

is denoted by E where we write:

y E E ,p,CpCs x T) (15)

When

T = T" and u = 0 on 9 x T-

we refer to y as an elastodynamic state of quiescent past and write:

9



ycE 0o(T,P,Cp, S; Q) (16)

See Nomenclature at end of report for a description of the notation

used in the continuity conditions of (a) above.

Stokes's Solution. Stokes's problem consists of an infinite domain

subjected to a concentrated load at a point which is fixed in direction

e. but has an arbitrary time varying magnitude. That is, we seek the1

solution in an infinite domain where the body force is given as:

$i(x,t) = f(t) 6(x-g) e.1 (17)

The solution is the fundamental singular solution of elastodynamics

and is originally due to Stokes (1849) (also see Love, 1944, Section 212

or Eringen and Suhubi, 1975, Section 5.10). The displacement at a position

x and time t is given as:

u.(x,t) = u..(xt; Jf) e. (18a)1 - 1 -

and

P SU,.(x,t;tif) = u (xt;0jf) + 11. .(x,L;tf) (18b)

-1

u f) [(- - X f f(t-Xr) dXjx t; I 4 pr -r 2  iJ)

0

r.r.

+ -2 2 f t (18c)

r Cp

10



C-

uS(t~~f 1 I 3rr. - S
S_ _f1 X f(t-Xr) dXui(1 '; ) 4npr -2 5ij/

r 0

r.r. (t - + f(t )  (18d)

r2 2 CS CSS S

r. = x. - (18e)
1 1 1

2
r 2 r.r. (18f)

P S

u.. and u.. are the irrotational and equivoluminal parts of the Stokesij Ij

tensor u... Substituting this result into the kinematic (Equation 2)ij

and constitutive equations (Equation 3) one can obtain the stress at

(x,t) as (Eringen and Suhubi, 1975):

f i.(x,t) = Oijk (x,t;lf) e k  (19a)

where

P S

cf. (X,t; Jf) = O ,t;f) + Ok(X_,t;tIf) (19b)
ijk 0.. (t.rlf\-

Puf ) _ {6 2[5rkr.r _ 6.jr, + 6.r" +6 ri
°ijk(t 47rr2  Cs r 3 r

-1
p 22 6r i k2C2 [6rrr ijrk + 6 rj + jkr i

x X f(t-Xr) dX - - r

0 Cp r

2
rpp I CS_ r r ~ t rp

- - i-6ft - 2 2- [ft - ) 2 r - )
P

2r +S _ r(19c)

2 C3

11



2[5rr~r, 6iUr + ikr + 6.kri]

S(xt; If) 1 { - 6 CrS +6 r+

C-i
S 6rir 6irk + 6ik r + 6 kr i

X f X f(t-Xr) dX + 2 ..... 3 r k r
0 r

0f r

xf t - _S --r-_ i-f t
- F) +F SS -

C Sr CS CS S

+ 2rrr (19d)

Note that with the above notation we can consider uij and aijk as

operators on the time variation of the concentrated load f(t). The

quantities of the form (t-r/C) are referred to as retarded times; the

effect of the temporal variation of the load is retarded by the time it

takes a wave to travel from the source to the field point.

The elastodynamic state, which corresponds to Stokes's solution

with the concentrated force acting parallel to the x k-axis, is referred

to as the Stokes state and denoted (Eringen and Suhubi, 1975, Section

5.10) by:

Yk (x,t;klf) = [Uik(X't;V0f, Ok(X't;VI ]  (20a)

where the vectors uk and second-order tensors 0 k (k=1,2,3) are:

Yk [ u ik]~ ak [d aijk] (20b)

In particular, we will often need to refer to a class of Stokes's

states that have a quiescent past. Consider the following definition

given by Wheeler and Sternberg (1968):

12



Let I E E3 and f be a twice continuously differentiable function of

time that vanishes on T , and p, Cp, CS, satisfy Equation 14. We call

the state y (x,t; jf) = [Uk,okJ defined on E x TW by Equations 20, 18,

and 19 the Stokes state of quiescent past for a concentrated force at

parallel to the xk-axis corresponding to the force function f(t) and to

the material constants p, Cp, CS .

If we assume Equation 18 is valid for an impulse force, i.e.,

f(t) = 6(t-t), the substitution leads to the free space Green's

function:

Gij(x,t;I,T) = uij[x,t;tj6(t-T)j (21a)

So this expression gives the it h component of the displacement field
th

at (x,t) due to the j component of a concentrated impulse acting at

(t,T). In some contexts the Green's function is written for T = 0 as:

G ij(x,t;t) = Gi(x,t; ,0) (21b)

By considering the "sifting property" of the 6-function, integration

of Stokes's solution gives the Green's function as:

G1. x~t (,r 4i p 2 {3r r .
6 .i (F

Gj(-x't;L'T) j r -D + t' -) - H(t' s

+ rir [ 1_ ( ,ti r ) i 6(t, _ r

+ # 6tI r (22)
+ S CS

where t' = t - T.

13



The above result for the displacement field, when substituted into

the kinematic and constitutive relations, gives the stress field as:

ij(x,t) = Tijk(x,t;IT) ek() (23a)

where

C2 t, [ r.r k  6ijrk + 6A rj + 6jkri,

Ti(_,t; -) 6 - k kk47Tr 2 r 2 r -r3 -r

_) r H(t' -L
(H(t' , PC 1

rir rk i rk + 6 ikr + 6kr,
+ 2 6 3 - ------ _

r 3 r

C 6 (t' r

2 C S C p

r. r.3

r C 3~ C P
2

1- - P6ri[ (rr r r
r6r i- 2 _S  t r + - t

r r rk [ ( r ) C( )

6ri j k 6(t rj + rS 6( S (23b)

By Cauchy's formula one can obtain the relationship for the traction

on a plane with unit normal n, as:
1

t1 (x,t) = Fk(x,t;I,T) ek() (24a)

14



where

Fik(x,t; , ) = Tijk(Xt;,T) n.(x) (24b)

It should be noted that many equivalent forms of Equations 22 and

23 are given in the literature. The above classical solutions to the

equations of elastodynamics are an essential element to the time domain

boundary element methods of this study. The second essential element is

the dynamic reciprocal theorem considered in the following section.

Dynamic Reciprocal Theorem. In elastostatics the Betti-Rayleigh

reciprocal work theorem provides a relationship between two distinct

equilibrium states. The dynamic reciprocal theorem can be written by

applying the D'Alembert principle -- including the inertia terms as a

part of the body force. By this approach, Rayleigh (1873) obtained a

theorem (Love, 1944, Section 121) from which Graffi's theorem (1946-1947)

can be deduced; we will take this approach in the following discussion.

For another proof of Graffi's theorem see, for example, Eringen and Suhubi

(1975, Section 5.8).

The following proof of Graffi's theorem is included for more than

the sake of completeness. A numerical method cannot be properly used,

let alone be implemented, without a basic understanding of the underlying

analysis. The development which follows also uses notation common to

much of the literature.

Consider two distinct elastodynamic states:

y = [u,ol c E(l,p,CpC s; Q x T ) (25a)

=[ ,a I E(Y ,PCpCs; 9 x T+ ) (25b)

defined on Q with initial conditions:

u(x,O) = u (x) u(x,O) =v (x) (26a)

in Q

U(X,O) = u(x) u (x,0) = v (x) (26b)

The elastodynamic equilibrium equations for each state are given as:
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i, + i = 0 (27a)

in S2

ai.. + = 0 (27b)

where

2ui(i p(F i  ,1) (28a)

2*
*-a (28b)i P T 2

Betti's reciprocal theorem for two distinct equilibrium states is

given as (Sokolnikoff, 1956, Section 109):

dA + f0uA + dV (29)

r 9 r 9

Note that we can substitute Equation 28 into Equation 29. Since

this expression is true for all T C T+, we can integrate from 0 to t to

obtain:

t t t 2*
tiui dA dT + PT.uidV dt - i dV dT

f fff f f-f2'1

o r 0~ OQ 0 a
u +f, T d V d - u d20

tt

or oi o at2 dT (30)

Integration by parts of the time derivative terms gives:

t 2 *ui(x,t) * *

1 2 ui(x,t) dt = 1,(x,t) ui.(x,t) - Vo (X) Uoi(X)

00 t

- i( , 1 ( ,t) dr (31a)

0
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t. a u.(x,') * *1 ui(x,) dT u(x, t) ui(x,t) -Vo(x) U o(X)

Sa 2  .. i 0 . .
0

t

-f Oi(,t) fi(x,T) dT (31b)

0

where ui = dui/dT. Substituting these results into Equation 30 and showing1 1

the independent variables explicitly, the following form of the reciprocal

theorem of elastodynamics is obtained:

t t
t (x,T) dA(x) dT + p(A) T (X,) ui(X,T) dV(x) dT

or 0

P( ui(At) u.(x,t) - v .(x) u (x) dV(A)

t t

f 3 3 ti(x,t) ui(x,T) dA(x) dT + J f p(X) 'i(X,T) ui(x,T) dV(x) d

or 02

f p(x)[fii(,t) u(? ,t) - v Wu*(x) dV(x) (32)

S2

Mansur and Brebbia (1985) derive the elastodynamic equivalents of

Somigliana's identities from this relationship. We will show the more

classical approach obtaining the same integral equations via Graffi's

theorem.

In obtaining Equation 32, we tacitly assumed that the two elasto-

dynamic states occurred at the same time, T. Alternatively, we can, in

effect, integrate the y* state from t down to 0; that is, the reciprocal

theorem "compares" the y* state at time t' = t- with the y state at

time T. Then the integration by parts of Equation 31 becomes:

17



t a2 *u(x,t-) .

S-2 u.i(x,t) dT u.(x,o) u.(x't) - ui(xt) Uoi(

0 11

t

- Jii(x,t-T) fii(x,t) dT (33a)

0

t 2a2ui(x,t) . . *

f ui(xt-t) di = ui(x,t) u (x) - Voi (x) ui(_x,t)
at 2  -' o 0

0

t

- fii~x,t) ii(x,t-T) di (33b)

0

We want the time derivatives that are outside of the time integrations

to be taken with respect to t instead of T. Noting that,

au i(?;, t -T au ui (x , t -T)

at at

We now define:

ii = au.i/at

Combining the results of Equation 33 with Equation 30 and rearranging

terms gives:

t L

ti(x,t-T) ui(x,t) dx dA(x) + p(x) f (x,t-T) ui(_x,[) di

ro 0

+ V oi(X) ui(x,t) + uoi(X) fii(x, t) dV(x)

18



t [t

f tiLx,') ui(x,t-T) dT dA(x) + p(;) Ti(x,T) ud

+ v(oiX) ui(x,t) + u oi(X) ii(x,t) dV(x) (34)

This is Graffi's reciprocal theorem of elastodynamics. Thus the

dynamical reciprocal theorem is an extension of Betti's reciprocal theorem

of elastostatics. Most authors express Equation 34 in terms of Riemann

convolutions (see Nomenclature) as:

J *
[t.*ui](x,t) dA(x) +f p(x) _I*ui](2;t)

r Q

+ v oi (X) ui(x,t) + U oi() ai(x,t)F dV(x)

f [ti*ui](x,t) dA(x) + P(x) 00 [.Ti it)

rQ

*
+ v ) ui(x,t) + U .(x) ii(Xt) dV(x) (35)

In elastostatics, an integral equation statement of the boundary

value problem (Somigliana's identities) is derived from Betti's recip-

rocal theorem by using as one of the equilibrium states a state given by

the fundamental solution (Kelvin's solution). In the following section

an integral equation statement of the elastodynamics problem is derived

from Graffi's reciprocal theorem using Stokes's solution to define one

of the elastodynamic states.

Integral Equations for the Direct Boundary Element Method. The

integral equation statement derived in this section is an exact statement

of the elastodynamics problem. The numerical approximation of this state-

ment is presented in a later section.
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We apply Graffi's theorem to two elastodynamic states: y corresponds

to our elastodynamics problem and y corresponds to the Stokes state of

quiescent past where the body load is a concentrated impulse load applied

at T=O (i.e., the G-een's function results of Equations 21 through 24).

Graffi's theorem is then written as:

t

I f Fk(-x't-TV;e)ek(-) ui(x,T) d dA(x)

r 0

t

f ff 6(t-T) t5(x-J) e .(1) U 1(X,T) dT dV(X)
Q 0

t

f f t i(1,T) G ik(-,t-T;) ek(1) dT dA(x)

F 0

t

" P f f T i'(x,Qt G ik x,t-Tj.) e k () di
0

Voi() G ik(,t;9 ) e + Ui(X) G(Xt) ek((x)t dV(x) (36)

As indicated in Equations 22 and 23, the times t and T always occur

in the Green's function (and the corresponding higher order tensors) as

the difference t-T. Physically, the response of the domain to a unit

impulse is a function of the elaspsed time since the impulse has occurred.

Mathematically, the Stokes solution (including the special case for the

Green's function) has the property of time translation. In particular,

let Bik represent Fik or G ik then we have:

B ik(,t-; ) = B ik(X,t-T;QO) = B.&WAN (37)

By Equation 37 and the definition of the Dirac delta "function,"

Equation 36 becomes:
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Uk( ,t) = 0;[Gk(,t;1,1) ti(x,t) - Fik( ,t; ,t) u.(xt) dT dA(x)

r0

t

+ Gik -,t; ,i) Pi.(x, ) d dV(x) + Ik( ,t;y,U) (38a)

9 0

where

IU ( tvy X Xt 1( 6(xt~)l dV(?x)
Ik(t; 0u) f [v(x Gik~xt~ 4-i A()Gk~~

Note that I U(,t;vo,u ) accounts for the effect of the initial con-
k -o_

ditions on the displacement field. Two alternative forms which differ

only in notation are given below. The first form uses the convolution

notation and is often written in the literature in an even more concise

manner.

uk(It) f { [Gik*ti](x,t) - [F ik *Ui(xt)} dA(x)

r

+ [Gik*'iJ(xt) dV(x) + I( (,t;VUo) (38b)

The second form is expressed in terms of functional operators for

0 (x,t;t!f), the Stokes state of quiescent past (Eringin and Suhubi,

1975, Section 5.11). It is given as:

uk( ,t) = f {u ?txt;ltt(x't)1 - to kxst;j l. (xt)1} dA(x)

r

+ J)I dV(x) + I k(,t;vo,) (38c)

where, by Cauchy's formula:

t0 1Xt;91f ] = 0ijk[ ,t;tlfI n.(x)
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The equivalence of the functional operator form (Equation 38c) to

the time convoluti)n form (Equation 38a or 38b) is illustrated by Eringen

and Suhubi (1975). Equation 38 is sometimes referred to as Love's (1944)

integral identity (Eringen and Suhubi, 1975, give additional historical

background). Love (1944) considered Ik(4,t;VoUo) in more detail showing

that the initial displacement and velocity at a point x affects a region

bounded by two spheres traveling at wave velocities C and C S centered

at x (see Eringen and Suhubi, 1975). Equia n !oo 38 is the elastodynamic

counterpart to Somigliana's first identity of elastostatics and plays

the same role in development of the direct BEM for elastodynamics.

The equation does not represent a solution to the elpstodynamic

problem since the traction and displcement distribution along the

boupdary are only partially known. (For a well posed problem, only

"half" of the boundary information is known. ) However, when applied to

the boundary, it provides an alternative analytical statement of the

boundary-initial value problem (BIVP). Consider applying Equation 38 to

an arbitrary point Q on r:

Uk(tFt) f G ik*ti]( _,t)dA(x) - [F ik*i1](x,t) dA(x)
r r

+ f ** ](x,t) dV(x)+ i u($r,tV, ) (39)f [ ik i .... N

Q

Note that the second noundary integration involves an improper in-

tegral to be interpreted as a Cauchy priniipal value intergral. In general

this can be written as:

f ~SING
I [F1 u Q I(x, t) dA(x) = F S INGu + jF* Qt dA(x) (40)ik iik u i  F, t)+ k i -

r r

FSING
where FI is the singularity contribution and the last integrnl must

ik
be intepreted as a Cauchy principal value integral. For smooth boundaries

FSING = -1/2 6 ik (see e.g., Cole, Kosloff, and Minster, 1978, Appendixik " 'k

A) and Equation 39 becomes:
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SUk( t) = [G k*tJ(X,t) [F *U ](x,t) dA(x)
2 Uk(rt f ik~ i ik f t

r

+ [Gk* P I(x,t) dV(x) + l(tr,t;v,Uo) (41)

This gives us a boundary integral equation (BIE) statement of the

boundnry-initial value problem. Relations similar to Love's integral

identity can be obtained for strain, stress, and traction by applying

Equations 2 and 3, and Cauchy's formula, to Equation 38; in a numerical

setting these suggested relations are often not used. The numerical

approximation of the above integral equations will be considered in

subsequent sections. First, we consider the integral equations which

the indirect boundary element method (]BEM) approximates in the next

section.

Integral Equations for the Indirect Boundary Element Method. The

integral equations which the IBEM numerically approximates can be deduced

from Equation 38. Banerjee and Butterfield (1981) present the analogous

development for steady-state and transient potential flow using an idea

originally due to Lamb (1932). Eringen and Suhubi (1975, Section 5.14)

derive the integral equations for elastodynamics by the same argument.

An overview of the derivation is presented below.

The indirect formulation can physically be visualized as embedding

the domain of the problem in an infinite space of the same media. The

traction distribution, along the surface corresponding to the boundary

of the original problem, is then sought which will satisfy the boundary

conditions.

The integral equations for this method can be derived from Equation

38 by considering two displacement boundary-initial value problems:

1. A displacement BIVP with body forces and initial conditions

defined on a domain Q and specified boundary conditions on the boundary

r.
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2. A displacement BIVP in the compliment space QC having the same

boundary conditions but with nil body forces and initial conditions.

For a finite domain problem with boiindary r, Q and QC correspond to
the domains for the interior and exterior problems, respectively. Applying

Equation 38 to both problems and equating the two expressions (knowing

the boundary conditions are equal) gives the relation:

ui(x,t) = [G ik*Pk ]( ,t) dA( ) + j [Gik**k] ( ,t) dV( )

r Q

+ I.(x,t;v ,_) (42a)

where the unknown vector valued function Pk (g,) is the difference in

the boundary traction distributions for the two problems, given as:

Pk( T) tk(L,T) - t (,T) E r x T (42b)

P k(,i) is often referred to as the fictitious or artificial traction

aistribution, it's artificial in the sense that it is a consequence of

embedding the problem in the infinite domain and has no meaning outside

of this context. To obtain the above relationship, symmetry of the Green's

function with respect to its indices and spacial arguments was employed.

Given the expression for the displacement field in Equation 42a,

the kinematic equation (Equation 2), constitutive relation (Equation 3),

and Cauchy's formula then give the traction field for a unit normal n.(x)

as:

ti(xt) = f [Fik*Pk](.,,t) dA(t) + f [F ik*k ](,t) dV( )

r 9

+ I T (,t; U o ) (43)

where

I T(x't;v°'°) P v o(_t) F k(X't; ) + Uo(1 Fi(x't;V)] MVI.(~~ --u f ok ik ok dV(k
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Similar expressions for the stress nnd strain fields are inter-

mediate steps in obtaining Equation 43, but often these expressions are

not used in the numerical formulation. If the artificial traction dis-

tribution were known, the response in the domain would be completely

defined by integral equations (e.g., Equation 42 gives the displace-

ment in the domain). To attain the artificial tractions, we bring the

response point to the boundary and enforce the boundary conditions.

To obtain the key integral equation which the IBEM is based on, we

assumed a displacement BIVP. In actuality, we apply the IBEM to the

fully-mixed BIVP and, thus, must consider traction boundary conditions

also. Note that while Equation 42 is regular upon integration, Equation

43 must be interpreted in a Cauchy principal value sense. The boundary

integral equations are then given as:

ui(x ,t) = [Gk*P](t) dA( ) + [Gi* k](j,t) dV(j)
1 f A i k' A k

r

U
+ Ii(xr't;vo ) r E ru  (44a)

t.(x ,t) ± 1 6k k(rt) + f [F. *" ]( ,t) dA(j)ti-rt 2 i ik FJ ikk]

r

+ f Fik*kl( ,t) dV(

T
+ Ii (X r, t;vo',o) xF E rT (44b)

where "" and "-" have been used to explicitly indicate the known and

unknown field variables, respectively. In Equation 44b, the singular

contribution is based upon a smooth boundary and the sign depends upon

the orientation of the normal vector.

This integral equation approach is sometimes referred to as "an

integral equation representation by vector simple-layer potentials,"

which reflects its potential theory origins (see e.g., Jaswon and Symm,

1977). Equations 44a and 44b are vector Fredholm integral equations of

the first and second kinds, respectively.
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Among the differences between the integral equations on which the

DBEM and IBEM are based, note that for the TBEM integration of boundary

displacements has been eliminated and thus only a single boundary inte-

gration in terms of the artificial tractions remains. Because of the

symmetry in the Green's tensor, this provides a field-source interpie-

tation to the integral equations -- a physically meaningful interpreta-

tion.

In the following sections we consider the numerical approximation

of the integral equations dcveloped above and how these numerical approxi-

mations might be combined with those of the FEM.

NUMERICAL SOLUTION

The above integral equation formulations provide a potentially

effective approach to modeling infinite domains. In the first sub-

sections below, we will consider the numerical approximations made in

the integral equations to obtain the direct and indirect BEMs. The

third subsection addresses how the efficiency of both BEMs can be

"optimized" by exploiting properties of the free-space Green's function

and modern computer hardware. The final subsection gives an overview of

coupling BEMs with the FEM by treating the BEM as a nonlinear boundary

condition on the FEM subregion of the problem.

Approximation of Integral Equations -- Boundary Element Methods

The following approximations are common to both BEMs: (1) the

integrations are performed in a piecewise manner, and (2) the boundary

integral equations are approximately satisfied in a boundary weighted

residual sense (usually by collocation). Though by tradition we appear

to be stuck with the name "boundary eleme|nt methods," it is somewhat of

a misnomer; it suggests that analagous to finite elements (on the domain)

we will have boundary elements with known shape functions which constrain

the boundary displacement. We often use the same locally supported family

of polynomials in the BEM as the FEM ,uses as shape functions (Lachat and

Watson, 1975); however, these functions merely facilitate the piecewise
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integrations and do not imply that the fields are actually constrained

to these interpolation functions. This implies that a coupling between

the BE and FE methods will be inherently incompatible. For a numericai

demonstration of this incompatibility in elastostatics see Cox (1988).

Let's consider the interpolation of boundary and domain quantities

before addressing a specific BEM. (The presentation given here is intended

for individuals familiar with the discretizations commonly made in BEMs;

for more detail, see Banerjee and Butterfield, 1981 or Brebbia, Telles,

and Wrobel, 1984.) The approximations for the displacement and traction

in terms of expansion functions in time and space (on F) are given as:

NN N TS

-nsui (xF,Nt) = Nn(xr Ts(t) (45a)
n= 1 s=1

NNP N TS

t (xr,t) = LN(r) Ts(t) tn (45b)

n=l s=l

Similarly if we let x i(x,t) represent any of the vector-valued
field quantities in Equations 38 through 44, it can be approximated as:

Np NT
NMP NTS

X i(xS2,t) = m M(X;S)_ Ts(t ) Xms, x Q C (45c)

m=l s=l

whereN (x th
where Nn(?r) = n expansion function for traction or displacement

on F

M(M) = mth expansion function for a field variable on

T (t) = s expansion function for timeS

NNP = number of boundary expansion functions
NMP = number of domain expansion functions

NTS = number of time expansion functions

-ns -ns -Lsut, Xi = expansion coefficients for the corresponding
quantities
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In the more general case, each boundary and domain expansion could

be written in terms of unique expansion functions. For implementation

purposes, let's b more snecific instead of more general. The time do-

main of the analysis [0,T A I is subdivided into NTS time intervals where
th T

the time at the end of the j interval is denoted as t.. In general,

it is not necessary that these time intervals (or steps) be of uniform

duration; however, as we will see in a later section, uniform steps allow

a more efficient time-stepping procedure. The boundary is discretized

into NEL surfaces which (despite the misnomer) will be referred to as

elements; the union of these surfaces spans the boundary. Associated
with the elements are N nodal points occurring at the extremeties or

within the elements. Similarly, the domain is discretized into NCEL

volume cells; the union of which spans the portions of the domain where

nonzero body forces or initial conditions occur. Associated with the

cells are N cell points occurring on the verticies, edges, and within

the cells. Geometrically, the boundary elements and volume cells are

similar to FE shell and solid (e.g., brick) elements. So that the ex-

pansion coefficients will correspond to the nodal values of the corres-

ponding boundary values, the following is required:

N n(xJ) = A nj x" r (46a)

T (t,) = 6 (46b)

where x. = position vector for the jth nodal point. Additionally, for

the expansion coefficients of the domain to correspond to the values at

the cell points, we require:

M (X,) = 6. x. (46c)m-j mj -j

th
where x. = position vector for the j cell point.-J i -ns

So, as an example, u. of Equation 45a is the displacement vector1

at node n and time step s. As suggested at the beginning of this section,

the interpolation functions in space often correpond to the polynomial

shape functions of the FEM. Before proceeding, let's discuss a few im-

portant exceptions which clarify the terminology:
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1. An exception to this occurs with so-called "discontinuous elements."

The simplest example is the constant element where the integration over

the element treats the boundary value as a constant. In this case the

nodal point resides at the center of the element. Note that the use of

the term "node" here corresponds to a point where boundary values are

specified and, thus, for the constant element is not sufficient to also

define the geometry. With "discontinuous elements" it is easy to define

loading discontinuities if they occur along element boundaries; adjoining

elements simply have distinct node points approaching the element boundary.

In practice we let these points coincide and simply perform the necessary

bookkeeping to associate the corresponding boundary values with the correct

element. "Discontinuous elements" will be further discussed in the next

section with regard to the collocation technique.

2. Another exception occurs for infinite domains where an interface

between BE regions extends to infinity, special interpolation functions

are required to formulate so-called "infinite boundary elements."

All of these interpolation functions have the mathematical attribute

referred to as "local support;" though they are defined over the whole

domain/boundary, they are nonzero only in adjoining cells/elements.

Local support will not provide a sparse system of equations as with the

FEM, however it does reduce assembly effort in forming the systems of

algebraic equations that approximate the integral equations.

The expansion functions in time can also be thought of as having

local support. These functions are defined such that:

1, t=t
s

n

(t) = ai ti  t E (t t s )s ' s-I's
i=O

o , t 0 (ts_1 ,t s
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That is, they are polynomial functions on the time step preceeding

t . Different choices of the polynomial coefficients give various inte-s

gration rules in time.

These interpolations are the first of two (principal) approximations

to be made. The second approximation addresses how the unknown boundary

values are obtained; how do we obtain the "best" expansion coefficients?

Direct Boundary Element Method. This section addresses the numerical

approximation of integral equations 38 and 41 -- the direct boundary

element method. As a stand-alone analysis too] or in a coupled solution,

Equation 41 must be approximated on the boundary to attain the unknown

boundary values. In this section we consider the application of the

DBEM as a stand-alone analysis tool; many of the equations are common to

the coupled solution approach. The response within the domain at any

point can then be calculated by integral equations like Equation 38.

Using the interpolations of the previous section, the boundary integral

equation (Equation 41) is approximated as:

NNP j
1I s tn s fn(kt ns

n=1 s=1

NMP j NMP
ms ms

* ) ) gik(+)t) k(, t ) 
^01

m=1 s=l m=1

* im (t~t) um) f A te(tj 1 ,tj] (47a)+ ik(  0 j
t ) oi

where

t

Sn s  G fk(x,t;t,T) N(x) T (T) dT dA(x) (47b)

r o

30



t

fik (t,t) = f F ik (j,t;tT) N n(x) T s() dT dA(x) (47c)

ro

t
gmskt) = Gi (,t;tT) M (x) T (T) dT dV( ) (47d)

gik(t,t) = f G Gik(,t; ) MM() dV(x) (47e)

-m

gk(t, t) = Gik( ,t;_k) M (20 dV(x) (47f)

The local support of each interpolation function tacitly implies

reduced limits of integration in both time and space.

The nodal boundary values at the time t. are approximated byJ

satisfying the integral equation in a collocation sense with respect to

both time and space. Other boundary weighted residual techniques could

be used but collocation is the most prevalent. In time, collocation

occurs at the ends of the previously defined time steps; in space, the

nodes are the most common collocation points. Some researchers (see

e.g., Patterson and Sheikh, 1981 or Brebbia, Telles and Wrobel, 1984)

only collocate inside the elements to: (1) eliminate special singular

contribution calculations when geometric discontinuities coincide with

nodes, and (2) to simplify the element assembly procedures. Internally

collocated elements are often referred to as "discontinuous " or "non-

conforming" elements -- another misnomer based on the shape function

fallacy. The following development does i)ot exclude nodal collocation;

however, the singular contribution used to obtain Equation 41 would

change for a boundary point which does not have a unique tangent plane.

Applying Equation 47 to NCp collocation points at the end of the
th

j time step gives:

NNP j
uj =IXj ts -*DF j s us + RJ c = 1,2. (48a)

-c cn n cn -n) c c , .Ncp

n=l s=1
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where

DGjs = [g c('tj) T R3 x 3  (48b)

DFJn = f kct )]T R3x3  (48c)

t = st} R (48d)

u u (48e)
-n

N MP j

- mc = 'gk(,tj) 41i-m=l s=l

N Mp +m m ( m){ (48f)
+ )('ik~c'j) mi+ ik 01

m=l

Note that the vector Rj gives the effect of body forces and initial
-Cconditions on the displacement at the collocation point. By combining

the singular contribution term on the left-hand side with the appropriate

DF matrices, one obtains:

NNP j

0 (DGj ts- DFj s us  + RJ c = 1,2,... (49)-n -n cn -n) -c "''cp

n=1 s=1

th
If the collocation point coincides with the p node, the relationship

between DF and DF is given as:

DFS - DF JS + 16 . 6
cn cn 2 sj np
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where I is the identity matrix for R3. Combining the equations associated

with each collocation point into a single system of equations gives:

o G s - F SuS + Gi t-j F1 u1 + Rj(50)

s=1

where

GJS DGjs DGJs
11 12 INNP

DGjs
21

=Gs  s = 1,2,...,j

DG js DGJS
NCP 1NCP NNP

DF11 DF12 INNP

Djs
21

SF = s

DF2 DF^js
NCP 1NCP NNP

ts us
-1 -1 -

t = U = s1,2,..,j

ts s j
-NNp NNPP -Ncp

Assuming NCp N N, we have GS , Fs R NEQx NEQ and ts, s, _ c RNEQ

for all s where NEQ = 3NCP = 3NNp As an alternative one could over-

collocate the integral equations (NCP>NNP, see e.g., Hutchinson, 1985)
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and then solve the resulting overdetermined system in a least squares

sense; however, its unlikely the overcollocation would be more effective

than solving the integral equations in a Galerkin sense.

As explicitly denoted by the -'s, the only unknowns are half the

boundary values at the current time step; actually this is an induction

assumption which we know is valid for j=l. In the following equation,

the induction is validated and a time stepping procedure is given.
th

Partitioning the boundary value vectors for the j time step as:

s-1
j- Gt -~S+[GG]{~K FF] ! _+j (51)

and isolating the unknowns on the left-hand side gives the following set

of equations for the unknown boundary values:

[Gi - F~] ~ [Fj -Gj] {.} (G ts -Fs us) -Rj (52)

The left-hand side now consists of the product of a fully-populated

coefficient matrix with the vector of unknown boundary values at time

t.. The right-hand side of the system of equations is determined byJ

four physically meaningfull sets of vaiies: (1) the known boundary

values at time t., (2) all the boundary values (displacements and trac-J

tions) at previous time steps, (3) the time variation of the body loads

to time t., and (4) the initial conditions.
j

The unknown boundary values at time t. are obtained by solving theJ

above system of linear equations. With an approximation of the boundary

values, the response at any point in the domain over the period of the
th
j time step can bp determined. Equation 38 gives the necessary integral

equation for the displacement field. The numerical approximation of

Equation 38 parallels the numerical approximation of Equation 41 except,

instead of considering a boundary collocation point, we consider an in-

ternal (domain) response point. The following revisions of Equation 47

yield the numerical approximation of Equation 38: (1) eliminatethe 1/2

factor on the left-hand side, and (2) interpret Equation 47c as a regular

integration since E S.
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As noted in a previous section, similar relations for the stress

and strain fields can be easily derived. If one wanted both the stress

and difplacement fields in a region, it would probably be more efficient

to: (1) calculate the displacement at a regular grid of points in the

domain, and then (2) approximate the stresses by finite difference or

finite element approximations. In the later case the derivatives operate

on the interpolation functions which span regions between points of known

displacement.

Equation 52 reflects the numerical burden that is characteristic of

formulations which use integral equations in time -- convolution. The

followipg section will discuss some ideas which significantly lighten

this burden. These ideas on improving the numerical efficiency are

equally applicable to the indirect BEM, so let's first consider its

formulation in the following section.

Indirect Boundary Element Method. This section addresses the

numerical approximation of integral Equations 42 through 44 -- the in-

direct boundary element method. As a stand-alone analysis tool or in a

coupled solution, Equations 42 and 43 must be approximated on the boun-

dary to attain the artificial boundary tractions. In this section we

consider the application of the IBEM as a stand-alone analysis tool;

many of the equations are common to the coupled solution approach. In a

coupled solution approach, the equations "are applied a second time" to

determine the unknown boundary values. The amount of numerical effort

is essentiiily equal to the direct method; however, the indirect method

calculates the artificial tractions as an intermediate step -- thus its

name. With the artificial tractions, the response in the domain at any

point can be calculated by integral equations like Equation 42a. Using

the interpolations of Equation 45, boundary integral Equation 1.4, is

written as:
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N NP N NMP j

I~ ((xxt t) +n ) + gms (Xt)pmS

n Jgs,;t m)])

N MP

+ mi~x t VMk + g.k(x't) um)

m=1

x~rU A tE (t.1,tI (53a)

where

t

g s(x,t) G f ~(x,t;t ) N ()T (,t) dt A(t\ (53b)

t

mkxs) G(x,t;t M() MV(q) '(T d (53c)

i= fXt (xtg M dV(t) (53e)

Since the free space Green's function is symmetric with respect to

its spacial arguments and indices, the above integrations are equivalent

to those of Equation 47. In a similar mniner, Equation 44b is approximated

as:

N NP j

t(x,t) = ±6 P (,t) +f xtP
1 2 ik k )(i

N MP j N MP

+ ~ ~ f ' 5 t (mm,2 + 7m (x t) m)
I L k'Xt k 1~k k ok)

XEr T A tF (t. j11tJ I (54a)
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where

t

f ns(x,t) = F F~(X,t; ,T) N(~ T (T) dr dA( ) (54b)

f NS (x~) ff F(Xt;t,T) M1 'r Tt) dr dV( ) (54c)

fm (x,t) = xtt t Vt 5d

TM i(x,t) = .(X't; ) M ( ) dV( ) (54e)

As previously mentioned, the local support of the interpolation

functions tacitly implies reduced limits of integration in both time and

space.

Again we will limit the discussion to the colloc~tion satisfaction

of the boundary integral equations. With the IBEM we apply Equation 53a

to collocation points on r u and apply Equation 54a to collocation points

on rT* s previously mentioned, we are actually addressing the fully-

mixed I3IVP; thus, the notation r Uand Fr is symbolic. Applying Equations

53a and 54a to N CPcollocation points at the eznd of the j thtime step

gives:

NNP j
DnCj P' + RGj . 1,2,...,N (55a)

n=1 s=1

where

N U number of displacement boundary conditions at collocation
U point c, 0<!5N 3

N x3

NU

uj {u1,(x,,tj)} c RU (55c)
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pS p s R 3 (55d)

RG1  1 - + ~m(t vm
c giSk(xc '  k + gik(c' tj ok

-m=l s=l I

-~ ~ I

+ gmk(x ,tj) u ER (55e)
ikcA okij

and

NNp j

t = + 1 pj + pS + RF c 1,2,... (56a)
-c -c cn -n C Ncp

n=1 s=1

where

NT  number of tracticn boundary conditions at collocation point c,
0 N T< 3

• D~s  Fns l) RNTx3

DFjs fk(_ct R (56b)
cn

N N

jNP NMPms VP ms + v m

kF t =fk(X,tj) k + k (f7k(c,tj) Vok

m=l s=l m= 1

+ k(_Xt.) u ) E RNT (56d)

Note that the vectors RG and RF give the effects of the body forces

and initial conditions on the displacement and traction boundary values,

respectively. By combining the singular contribution term with the appro-

priate DF matrices one obtains:

NNP j

tj= DF~s S + RFJ  r = 1 2 N...,N (57)
c ncn --n c cp
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th
If the collocation point coincides with the p node, the relation-

shi, Itvioan D1 and OF is given as:

DFJS = DFJS + 1 6. 6
cn cn 2 js np

Let NUEQ denot- the total number of equations associated with dis-

placement boundary conditions and NTEQ denote the total number of equations

associated with traction boundary conditions; that is, if we indexed NU

and NT for each collocation point we would have:

NCp NCp

UEQ  NU , NTEQ = T

c=1 c=l

where NUEQ + NTEQ = NEQ = 3NNP = 3Ncp. Combining the equations associated

with each collocation point into a single system of equations gives:

R = j-1 Gs ps + Pj + (58)
^J F Fs - Fj -

where

uj  tj

N cp -N CP
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-Nl
P 2 N EQ Nn

RGJ

PSP

~N NPJ RF I

RFN

and Gs and Fs are assembled as shown for Equation 50 except that the

order of the submatrices varies as indicated in Equations 55 and 56;

thus, some of the submatrices do not even exist. For example, if col-

location point number 3 corresponds to a point with traction boundary

conditions only (i.e., NT=3 and N =0) then: (1) DG S does not exist for
jsT33 U 3n

all j,s,n; and (2) DF E R for all j,s,n. So we have33X

Gs E RNUE Qx NEQ and Fs E RNTEQ x NEQ

such that the combination of these partition matrices gives square

matrices. Isolating the unknowns on the left-hand side gives the fol-

lowing set of equations for the artificial tractions at the the end of
.th

the j time step,

= R}i - R (59)
FY J s=l Fs -

As previously discussed, the IBEM solves for the artificial traction

values instead of the unknown boundary values. With the artificial trac-

tions determined, unknown responses on thn boundary or in the domain,
th

over the interval of the j time step, can be calculated. As an example,

to calculate internal displacements an equation like Equation 53a can be

written, however x is not necessarily on F this also could easily be

expressed in matrix notation.
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Efficient Implementation. To use the term "efficient" in addressing

the numerical implementation of the time domain boundary element method

is a bit tongue-in-cheek; Equations 52 and 59 reflect the numerical burden

that is characteristic of formulations which use integral equations in

time -- convolution. In this section, we will see that the "bad news"

of the previous two sections can be softened considerably -- but not

forgotten. We will first consider a few properties of the Green's func-

tion which can be exploited and then consider how modern trends in com-

puter architecture, parallel processing, lend themselves to convolution.

Cole, Kosloff, and Minster (1978) appear to have been the first to

present the time domain DBEM for elastodynamics. The development in

their initial work, for the sake of a simplified explanation, was limited

to the two-dimensional case of antiplane strain (a scalar BIVP). Their

work contains an excellent discussion on how the Green's function proper-

ties can be exploited to improve numerical efficiency and how these prop-

erties motivate their selection of interpolation functions. We have

previously selected a class of interpolation functions and are concen-

trating on numerical efficiency in this section.

Initially, it appears that Equations 52 and 59 require the calcula-

tion of O(NT2N 2) coefficients; or following Cole, Kosloff, and Minster's

notation O(NTsNCp) discrete kernals, DG and DFScn . However, the Green's

function has the property of time translation which can be expressed as:

G ij(x,t+At;t,T+At) = G ij(x,t;g,T)

(60)
F ij(x,t+At;t,T+At) = F ij(x,t; ,T)

If the temporal interpolation functions have the same property,

that is:

T n+k(t+kAt) = T (t) (61)n~k n

then one has for the discrete kernals that,

,,J+k s+k = DGjs

cn cn

(62)

DFJ+k s+k = DFjs
cn cn
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For this property to be fully exploited, Equation 61 requires the

analysis to be limited to uniform time steps. With uniform time steps

only the full matrices relating the jth time step to the 1s t time step

must be calculated. This includes matrices resulting from the numerical

approximation of both boundary and domain integrations. Exploiting this

property then reduces the number of discrete kernal calculations to

O(NTN p) assuming we are able to save matrices calculated at previous
S th

time steps. For the DBEM (see Equation 52), this means at the j times s 2

step we must have saved Gs and Fs for s=12, ... ,j-l or 2NQ (j-1) floating
EQ2

point numbers. Similarly, for the IBEM (see Equation 59) NEQ(j-I) float-

ing point numbers must be saved for a BE analysis. For a coupled solution

approach, the IBEM must also save 2N2Q(j-I) floating point numbers since

both the interface displacements and tractions are unknown. This will

be more apparent in the following section.

In a coupled solution approach adaptive adjustment of the time steps

in an analysis will greatly increase the cost associated with the BE

subdomain. If the time step s4'e is only "occasionally" changed the

piecewise uniformity can be exploited but to a lesser advantage. The

determination of the "optimum" amount of adaptive time step adjustment

is a subject for numerical parameter studies.

The time translation property also indicates the possibility of

numerical instability. Cole, Kosloff, and Minster (1978) consider the

iterative process as being similar to a finite difference method on the

boundary where the difference molecule expands backward in time with

each step. They show that when a linear interpolation in time is used

for the tractions, the process is marginally stable in theory and they

also indicate it has been found to be unstable in practice.

Two more properties of the Green's function allow us to reduce the

number of unique coefficient calculations and associated storage. The

first property is causality, which simply says "there is no response at

a given point in the domain due to an impulse load until the dilational

wave has had time to travel to that point." It can also be seen (Equa-

tion 22) that the response of the point is again quiescent after the

shear wave passes. In general, the nonzero response in the domain due

to a concentrated impulse load is bounded by two spheres traveling at
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the speeds of the dialational and distortional waves, respectively. In

x the region affected by the impulse load is bounded by two hyper-

cones with axes along the time axis (see e.g., Cole, Kosloff, and Minster,

1978). The causality and post shear wave quiescence can be expressed

as:

G ij(x,t;t,-t) = 0 (t-t)Cp < r (63a)

and

G ij(x,t; ,T) = 0 (t-T)C S > r (63b)

respectively.

We will inheiently violate both of these with the discrete kernals.

As indicated by Cole et al. (1978), the use of interpolators with separable

space and time dependence is noncausal. Consider the spacial linear

interpolation functions of the FEM. When the wave front passes a given

node the interpolation function instantaneously becomes nonzero in a

localized region. Since this region can extend beyond the wave front

there is a noncausal behavior in the numerical approximation; that is,

our numerical approximation results in responses at points prior to the

dilational waves arrival. Cole et al. (1978) indicate that they do not

expect the errors due to this effect to be large if very localized inter-

polators are used unless wavelengths comparable to the node separation

are encountered. So the motivation for using higher order elements to

reduce the number of degrees of freedom is opposed by the motivation to

reflect the causality property in the numerical model.

The causality property and post shear wave quiescence of the Green's

function cause many of the discrete kernals to be zero if we impose re-

strictions on the spacial and temporal interpolation functions. Cole et

al. (1978) give general requirements since they are motivating their

selection of interpolation functions. The restriction is simply the

local support of the interpolation functions in time and space; for our

interpolation functions this is expressed as:

Nn(x) = 0 Ix-X nI > L (64a)

T s(t) = 0 t 5 ts_1  or t > ts (64b)
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where L is the maximum distance from x to any point on an element ad--n

joining the nodal point. For interpolation functions associated with an

extreme node, L is bounded by the maximum of the two adjoining element

lengths. With the local supporL the discrete kernals reflect the

causality property as:

DG = DFJS = 0 (t.-t )C < Ix -1c1 - L (65a)
cn cn S- s-P _Mnc

DG = DFJS = 0 (tj-ts)CS > IXn- c I + L (65b)

This gives a lower limit on which discrete kernals are zero; for

some combinations of interpolation function and collocation points the L

are not needed in the inequalities of Equation 65. These relations

(Equation 65) can be thought of as the discrete analogs to the causality

property and post shear wave quiescence of the Green's function.

A numerical implementation can then use inequalities similar to the

above to eliminate many discrete kernal integrations and their subsequent

storage. For an out of core routine (i.e., where the coefficient matrices

are written to disk) one might save a Boolean variable prior to saving

each discrete kernal where the Boolean variable has the value of "true"

only if the discrete kernal values are nonzero. This would then only

require a 1-bit read for zero discrete kernals as apposed to a 576-bit

read (assuming a 64-bit real word).

Before we leave the subject of causality, we should note that Cole

et al. (1978) gave a criteria for the time step as At < L/(2Cp) where L

was the minimum element length. They discuss the motivation for this

criteria in terms of the backward causality cone (see the reference for

details). Other researchers (e.g., Manolis, 1983 and Karabalis and Beskos,

1984) suggest similar criteria for three-dimensional problems.

The last properties of the Green's function which can be exploited

to reduce the numerical effort are the spacial translational and rotational

symmetries. The translational symmetry can be expressed as:

GSj(A+z,t; + z,,) = GSijx,t; ,) (66)
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In general, these symmetries are not present in the discrete kernals

since the geometric descretization lacks spacial regularity; however,

for a coupled problem the geometry of the interface is relatively arbi-

trary and thus it can be defined to exploit these symmetries. The sim-

plest interface geometry for a dry dock might consist of a half cylinder

with hemispherical ends.

An implementation which exploits these symmetries would probably be

highly specialized being based on a given interface surface geometry.

The analysis cost would be reduced since there would be fewer numerical

integrations and associated storage; some of the integrations would be

identical to previous integrations and some could be obtained by the

orthogonal transformation of previous integrations. The analysis cost

would be reduced but the implementation cost would be increased. Sig-

nificant bookkeeping would be necessary to relate integrations to previous

integration results.

The last item to consider in this section is parallel processing.

The equations which arise in the numerical approximation of integral

equations lend themselves to parallel calculations. Consider the forms

of Equations 52 and 59. At each step the new coefficient matrices could

be calculated in a parallel manner assigning each processor to specific

elements. In addition, the matrix multiplications associated with the

boundary values (or artificial tractions) of previous steps could be

assigned to different processors. The parallel calculation of the matrix

multiplications necessitates either: (1) a large amount of dedicated

memory for each processor, or (2) an architecture which performs 10 in a

parallel manner also so the system would not be "bus limited."

In this discussion, we have tacitly assumed that the individual

integrations (i.e., Equations 47, 53, and 54), are efficiently evaluated.

We did not address the evaluation of these integrations. For details on

these calculations see: Banerjee and Ahmad (1985); Banerjee, Ahmad, and

Manolis (1986); and Ahmad and Banerjee (1988).

Assuming the BEM calculations are now efficient enough to be of

practical use, we consider how to combine the BEM with the FEM in the

next section. For examples of the application of the time domain BEM

see: Manolis (1983 and 1984); Karabalis and Beskos (1984, 1985, and
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1986); Karabalis, Spyrakos, and Beskos (1984); Mansur and Brebbia (1985);

Banerjee and Ahmad (1985); Banerjee, Ahmad, and Manolis (1986); and Ahmad

and Banerjee (1988).

Coupling the BEls with the FEM

In this section we consider coupling the direct and indirect BEMs

to the FEM. The coupling approach is based on an idea presented by Dr.

Benjamin Loret (1987) during a seminar at the University of California,

Davis. In his presentation he gave the results of an iterative coupling

between the FEM and an integral equation method for a homogeneous half-

plane in elastostatics. The essence of his work was the treatment of

the BE subdomain as a nonlinear boundary condition to the FE subdomain.

We extend the idea to time domain problems in this section. Very brief

outlines of algorithms for the IBEM and DBEM are given; the FEM is not

presented in any detail.

As initially indicated in this report, the motivation for coupling

the two methods is to let each method model the portions of the domain

for which it is best suited. In particular, we apply the BEM to the

infinite domain at whatever distance we are willing to model the media

as a homogeneous, isotropic, linear elastic material. The remainder of

the problem, structure and soil, is modeled by the FEM which is well

suited to inhomogeneous, anisotropic, inelnstic materials.

The problem is in general nonlinear since the constitutive law

governing the material behavior in the FE region is inelastic. We then

add another nonlinearity by treating the BE region simply as a nonlinear

boundary condition to the FE region. The main steps in the coupling are

outlined below:

1. Assume rI is fixed during the first time step. (Assumes the

body is at rest at the beginning of the nnalysis.)

2. With the given displacement boundary conditions on r, use the

FEM to calculate the generalized nodal forces along rI.
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3. Assuming the BE region displaces like its interpolation functions

along the boundary, calculate the traction distribution on rI from the

generalized nodal forces.

4. With the given traction distribution at the end of the time

step, calculate the corresponding displacements along rI*

5. Repeat steps 2 through 4 until the nodal forces and displace-

ments converge.

6. Repeat steps 2 through 5 for each time step using as the initial

displacement estimate the interface displacement obtained at the end of

the previous time step.

The temporal aspects of the FEM are handled by a finite difference

approximation; the temporal aspects of the BEM are handled by a numerical

approximation of the convolution integral. The coupling of the two methods

iterates at each time step to approximately satisfy equilibrium and conti-

nuity at their interface.

We consider each of the BE formulations below in more detail. For

brevity assume the BE subdomain's boundary consists of r alone. This

is not a limitation of the coupling method.

DBEH-FEM Coupling. Assumming traction boundary conditions,

Equation 52 can be written as:

Fj uj = Gj tj + b (67a)

where

j-1

b = G~ t5 - FS u S) + R1  (67b)

s=1

and .) and tJ are the interface displacements and tractions, respectively.

An overview of the coupling algorithm is presented below. The algorithm

is described in pseudo-code with a Pascal/Modulo 2 dialect. Consistent

with the mentioned languages, supplemental comments which would not represent

actual code are enclosed with (* *)'s. Thn FE calculations are simply

represented by a single call to a procodlrn named FE_Calculations.
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FOR j:= 1 TO NTS DO (* for each time step *)
IF time steps are uniform THEN

FOR i:= j TO 2 BY -1 DO (* not executed for j=l *)

G Gi - I

F F i - 1

ENDfor_i

Calculate G
1 and F

1

IF j=1 THEN obtain LU factorization of F 1 ENDif

(* only factored once *)

ELSE (* only worst case is shown -- change on time step size each

step *)

FOR i:= 1 TO j DO

Calculate G
i and F

i

ENDfor_i

Obtain LU factorization of F
j

(* factored each step for worst case *)

ENDif

Let uJ:= u j- (* i.e., initially estimate the interface

displacements at t. by known interface displacements
j

at t j I *)

Calculate b by Equation 67b (* contribution to known vector not

dependent on step j *)

REPEAT (* the nonlinear boundary condition iteration *)

(* Perform the FE calculations based on the displacement BCs

on r Note that fJ denote the generalized nodal forces

on r *)

FECalculations(uj , _f, iterat ion convergence criteria,...)

Calculate the traction distribution t] on r for the BEI

region by assuming nodal loads are obtained by weighting

the tractions by the interpolation functions.

Calculate a new interface displacement estimate by solving

Equation 67a for u j . Noto that WU factorization

of Fj was previously obtained.

UNTIL nonlinear boundary condition itoration has converged

END-for-j.
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IBEM-FEM Coupling. Assuming traction boundary conditions, Equation

59 can be written as:

FJ J = tJ + T (68a)

where

j -l RF
j-1 -1

b T - FS PS - (68b)

s=l s1 RFJ

-N 
c

and PJ and tj are the artificial and actual interface tractions,

respectively. With the artificial tractions obtained by the above

equation, the unknown displacements along the interface can be obtained

by Equation 59 as:

u = GJ P + bU (69a)

where

j-1 -1

bu G Gs s + . (69b)
s=l G P

-RG NCP

These two systems of equations can he used to couple the IBEM to

the FEM analagous to the approach used aNovo, for the DBEK. An overview

of the coupling algorithm is presented bolow.

49



FOR j:= 1 TO NTS DO (* for each time step *)

IF time steps are uniform THEN

FOR i:= j TO 2 BY -1 DO (* not executed for j=l *)

Gi G i 
-I

Fi: F i '

ENDfor_i

Calculate G1 and F1

IF j=l THEN obtain LU factorization of F1 ENDif

(* only factored once *)

ELSE (* only worst case is shown -- change on time step size each

step *)

FOR i:= 1 TO j DO

Calculate Gi and F

ENDfor_i

Obtain LU factorization of F
j

(* factored each step for worst case *)

END_it

Let uu:= (. i.e., initially estimate the interface

displacements at t. hy known interface.J

displacements at t *)
j-i

Calculate bT and bU by Equations 68b and 69b, respectively

(* contributions to known vectors not dependent on step j *)

REPEAT (* the nonlinear boundary condition. Ueration *)

(* Perform the FE calculations based on the displacement BCs

on r I . Note that fJ denote the generalized nodal forces on

rI ' *)

FE_Calculations(u , f , iteration convergence criteria, ..

Calculate the traction distribution t& on r I for the BE region

by assuming nodal loads are obtained by weighting the

tractions by the interpolation functions.

Calculate a new artificial traction vector estimate by solving

Equation 68a for PJ

Note that IIJ factorization of Vi was previously obtained

Calculate a new interface displacoment estimate, uj , by

Equation 69a

UNTIL nonlinear boundary condition i toe-i.Lion has converged

ENDforj.
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Note that tne algorithms for coupling the direct and indirect BEMs

are very similar. For problems with zero body forces and a quiescent

past the two coupled approaches require the same amount of numerical

effort; when body forces or nonzero intial conditions exist the direct

method requires less computational effort. However, if many responses

within the BE region are obtained in an analysis the IBEM could require

less computational effort since it integrates the effect of a single

time varying vector (the artificial tractions) instead of two vectors

(the boundary displacements and tractions) like the DBEM.

Note that the above algorithms do not explicitly show:

" exploitation of causality property and post shear wave

quiescence

* details of how to exploit the time translation property when the

time step size changes only intermittently

* details of FE calculations

* internal response calculations for the BE region

" parallel calculation

" convergence criterias

As previously mentioned, the displacements along the boundary of

the BE region do not agree with the interpolat ion functions except at

the collocation points. Thus, the use of the interpolation functions as

shape functions, which they are not, to calculate the traction distribution

along the interface from the general ized nodal forces is inherently in

error; it also implies that we only sat isfy continuity at the collocation

points. The inconsistency betwe~u' the assumed and actual distribution

of the displacements could possibly be ,1ccoIIT.ted for with a "weighting

approach" by calculating the displa-emnl at boundary points between

collocation points. At worst (assuming we have convergence) the incon-

sistency is a good indicator of when mesh rf finemett is necessary.
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In the above algorithms we explicitly showed the FEM calculations

within the iterative loop for the nonlinear boundary conditions (BCs).

The FEM calculations themselves contain iterations to satisfy the con-

stitutive relations (among other things). Whether the constitutive

relations should be iterated to convergence within each BC iteration is

a subject for numerical studies. We are uncertain of the effects on

numerical efficiency and convergence. The BEM calculations in each BC

iteration are of O(N2Q) (assuming the BE region is not subdivided into

smaller subregions); thus, in the above algorithms we sought to minimize

the number of BC iterations. It might be most effective to have the

convergence criteria of the FE calculations become tighter as the BC

iterations converge.

CONCLUSIONS

The time domain boundary element methods based upon the Stokes

solution appear to be the best suited BE formulations for the coupled

solution of structural/geotechnical interaction problems that include

nonlinearities and infinite domains. The direct boundary element method

(DBEM) has a very elegant analytical basis which expresses the elasto-

dynamic boundary-initial value problem in an integral equation form using

the Stokes solution and the dynamic equivalent to Betti's reciprocal

work theorem. The integral equations for the indirect boundary element

method can be derived from those for the DBEM by considering an exterior

and interior problem with a common boundary. An artificial traction

along the common boundary is determined which satisfies the boundary

conditions of the actual problem while displacement compatability of the

two problems is enforced. The analytical basis for both methods involves

integral equations in both time and space.

While the integral equations are very elegant theoretical formula-

tions, their numerical approximations are compotationally very demanding.

For more efficient computations one caln exploit certain properties of

the Green's function and modern computer hardware, such as parallel
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processing; this requires considerable algorithm implementation effort

but appears to be a necessity for anything buit an academic computer

program.

Time domain BEMs based upon Stokes's solution provide a very rig-

orous solution to the radiation boundary condition problem associated

with infinite domains. The theoretical and numerical background for the

methods provides a good basis for future implementation work. As to

whether the coupled solution approach wi'l provide a cost-effective

solution for problems with infinite domains, speculation is a poor sub-

stitute for numerical experience. However, carcfill algorithm design

and computer hardware advances will improve the potential of applying

the methods to large structural/geotechnical problems.

RECOMMENDATIONS

The following outlines the recommended steps for the development of

a coupled FEM/BEM computer code for the dynamic analysis of soil-structure

interaction problems:

1. Investigate the numerical integrations necessary for the BEM in

elastodynamics. That is: (a) classify the different integrations (e.g.,

singular versus nonsingular), (b) determine appropriate numerical integra-

tion schemes, and (c) investigate the accuracy of the numerical schemes.

2. Develop a simple stand-alone BEM computer program for elasto-

dynamics.

3. Extend the BEM program to exploit Green's function properties.

4. Extend the BEM program to exploit parallel processing hardware.

5. Extend the BEM program for uso in, a coupled FEM-BEM solution.
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NOMENCLATM

A partial list of symbols used in this report follows.

Mathematical SymbolstI (x,t) £ X T-

t

[O*x](2;'t) f 0( xj,t-T) X(xS,T) (IT, (?,t) E Q x T +

0

where 0 and X are such that C0(x,t),x(x,t)1 ( x T+).

This defines the Riemann Convolution. For brevity it is often denoted

as simply #*X.

Script Symbols

E Class of all elastodynamic states.

E0  Class of all elastodynamic states of quiescent past.

Y An elastodynamic state.

Latin Symbols

Cm'n(Q x T) Defines the class of all functions which have continuous

spacial and temporal derivatives of order up to and

including m and n, respectively, on 9 x T.

E3  Three-dimensional Euclidian space corresponding to R
3.

E3t Three-dimensional Euclidian space E3 omitting the point .

Rn The linear space of ordered n-ttiples of real numbers.

T+  The time interval [0,-). Where [ and ) denote the

closed and open ends of the interval, respectively.

T The time interval (--,0].

T" T T+ U T
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Greek Symbols

6 ij Kronecker delta symbol.

6(x,z) Dirac 'delta function.'

E ij Strain tensor in rectangular Cartesian system.

r Complete, finite boundary of tho problem.

a ij Stress tensor in rectangular Cartesian system.

9Domain of the problem.

0i Vector of body forces per unit volume.

. Vector of body forces per unit mass.1

p Mass density at a given point in the domain.

4i Position vector to a point on the boundary of the problem.
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Figure 1. Elastodynamics problem using coupled solution approach.
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CITY OF LIVERMORE Dackins, PE. [ivermore. CA
CIARKSON (OLL OF TECH CE Dept (Batson), Potsdam, NY
COLORADO STATE UNIVERSITY CE Dept (Criswell), Ft Collins. CO
CORNELL UNIVERSITY Civil & Environ Engrg (Dr. Kulhawy), Ithaca, NY: Library, Ithaca, NY
DAMES & MOORE Library. Los Angeles. CA
FLORIDA ATLANTIC UNIVERSITY Ocean Engrg Dept (Su). Boca Raton. FL
FLORIDA INST OF TECH CE Dept (Kalajian). Melbourne. FL
GEORGIA INSTITUTE OF TECHNOLOGY CE Scol (Kahn). Atlanta. GA: CE Scol (Swanger), Atlanta, GA:

CE Scol (Zuruck). Atlanta, GA
INSTITUTE OF MARINE SCIENCES Library. Port Aransas. TX
JOHNS HOPKINS UNIV CE Dept (Jones). Baltimore. MD
LAWRENCE LIVERMORE NATL LAB FJ Tokarz, Livermore. CA: Plant Engrg Lib (L-654), Livermore, CA
LEHIGH UNIVERSITY Linderman Library. Bethlehem. PA
LONG BEA('H PORT Engrg Dir (Allen). Long Beach. CA
MICHIGAN TECH UNIVERSITY CE Dept (Haas), Houghton, MI
MIT Engrg Lib. Cambridge. MA: Lib, Tech Reports. Cambridge, MA
NATL ACADEMY OF SCIENCES NRC, Naval Studies Bd, Washington. DC
NEW MEXICO SOLAR ENERGY INST Dr. Zwibel. Las Cruces, NM
OREGON STATE UNIVERSITY CE Dept (Hicks), Corvallis. OR
PENNSYLVANIA STATE UNIVERSITY Gotolski, University Park. PA: Rsch Lab (Snyder). State College,

PA
PORTLAND STATE UNIVERSITY Engrg Dept (Migliori). Portland. OR
PURDUE UNIVERSITY CE Scol (Leonards), W. Lafayette. IN: Engrg Lib, W. Lafayette, IN
SAN DIEGO PORT Port Fac, Proj Engr, San Diego, CA
SAN DIEGO STATE UNIV CE Dept (Krishnamoorthy), San Diego, CA
SEATTLE PORT W Ritchie, Seattle. WA
SEATTLE UNIVERSITY CE Dept (Schwaegler), Seattle, WA
SOUTHWEST RSCH INST Energetic Sys Dept (Esparza), San Antonio, TX; King. San Antonio, TX; M.

Polcyn. San Antonio. TX: Marchand. San Antonio, TX
STATE UNIVERSITY OF NEW YORK CE Dept (Reinhorn). Buffalo. NY: CE Dept, Buffalo, NY
TEXAS A&M UNIVERSITY CE Dept (Machemehl), College Station, TX; CE Dept (Niedzwecki), College

Station. TX: Ocean Engr Proj. College Station, TX
UNIVERSITY OF CALIFORNIA CE Dept (Fenves), Berkeley. CA: CE Dept (Fourney). Los Angeles. CA;

CE Dept (Gerwick,. Berkeley. CA: CE Dept (Taylor). Davis, CA; CE Dept (Williamson), Berkeley, CA;
Naval Archt Dept, Berkeley, CA

UNIVERSITY OF HARTFORD CE Dept (Keshawarz), West Hartford, CT
UNIVERSITY OF HAWAII CF Dept (Chiu). Honolulu, HI: Manoa, Library, Honolulu, HI; Ocean Engrg

Dept (Ertekin). Honolulu, HI
UNIVERSITY OF ILLINOIS Library. Urbana, IL: Metz Ref Rm. Urbana. IL
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UNIVERSITY OF MICHIGAN CE Dept (Richart). Ann Arbor. Mf
UNIVERSITY OF NEBRASKA Polar Ice Coring Office. Lincoln. NE
UNIVERSITY OF NEW MEXICO HL Schreyer. Albuquerque, NM: NMERI (Bean). Albuquerque. NM;

NMERI (Falk), Albuquerque. NM: NMERI (Leigh). Albuquerque, NM
UNIVERSITY OF PENNSYLVANIA Dept of Arch (P. McClearv), Philadelphia, PA
UNIVERSITY OF RHODE ISLAND CE Dept (Kovacs), Kingston. RI: CE Dept, Kingston, RI
UNIVERSITY OF TEXAS CE Dept (Thompson), Austin, TX: Construction Industry Inst, Austin, TX: ECJ

4. (Breen). Austin. TX
UNIVERSITY OF WASHINGTON CE Dept (Mattock). Seattle. WA
UNIVERSITY OF WISCONSIN Great Lakes Studies Cen, Milwaukee. WI
WASHINGTON DHHS. OFE PHS (Ishihara). Seattle. WA
ADVANCED TECHNOLOGY. INC Ops Cen Mgr (Bednar). Camarillo. CA
AMERICAN CONCRETE INSTITUTE Library. Detroit, MI
ARVID GRANT & ASSOC Olympia, WA
ATLANTIC RICHFIELD CO RE Smith. Dallas. TX
BATTELLE D Frink. Columbus, OH
BECHTEL CIVIL. INC Woolston. San Francisco, CA
BETHLEHEM STEEL CO Engrg Dept (Dismuke). Bethlehem. PA
BRITISH EMBASSY Sci & Tech Dept (Wilkins), Washington, DC
BROWN & ROOT Ward, Houston, TX
CANADA Viateur De Champlain, DS.A., Matane. Quebec
CHEVRON OIL FLD RSCH CO Strickland. La Habra, CA
CHILDS ENGRG CORP KM. Childs, Jr, Medfield, MA
CLARENCE R JONES. CONSULTN. LTD Augusta. GA
COLLINS ENGRG. INC M Garlich. Chicago. IL
CONRAD ASSOC Luisoni, Van Nuys. CA
CONSOER TOWNSEND & ASSOC Schramm. Chicago. IL
CONSTRUCTION TECH LABS. INC G. Corley, Skokie, IL
DAVY DRAVO Wright. Pittsburg, PA
DILLINGHAM CONSTR CORP (HD&C), F McHale, Honolulu. HI
I One Yam Chai. Singapore
EARL & WRIGHT CONSULTING ENGRGS Jensen. San Francisco. CA
EVALUATION ASSOC. INC MA Fedele. King of Prussia, PA
GRUMMAN AEROSPACE CORP Tech Info Ctr. Bethpage. NY
HALEY & ALDRICH. INC. T.C. Dunn, Cambridge, MA
HARTFORD STEAM BOILER INSP & INS CO Spinelli. Hartford, CT
HAYNES & ASSOC H. Haynes. PE. Oakland. CA
HIRSCH & CO L Hirsch, San Diego. CA
HJ DEGENKOLB ASSOC W Murdough, San Francisco. CA
HUGHES AIRCRAFT CO Tech Doc Cen. El Segundo, CA
INTL MARITIME. INC D Walsh, San Pedro, CA
IRE-I'fTD Input Proc Dir (R. Danford), Eagan. MN
JOHN J MC MULLEN ASSOC Library. New York, NY
LEO A DALY CO Honolulu, HI
LIN OFFSHORE ENGRG P. Chow, San Francisco CA
LINDA HALL LIBRARY Doc Dept, Kansas City. MO
MARATHON OIL CO Gamble. Houston. TX
MARITECH ENGRG Donoghue, Austin, TX
MC CLELLAND ENGRS. INC Library. Houston, TX
MOBIL R&D CORP Offshore Engrg Lib. Dallas. TX
MT DAVISSON CE. Savoy. IL
EDWARD K NODA & ASSOC Honolulu, HI
NEW ZEALAND NZ Concrete Rsch Assoc, Library. Porirua
NUHN & ASSOC A.C. Nuhn, Wayzata. NM
PACIFIC MARINE TECH (M. Wagner) Duvall, WA
PILE BUCK. INC Smoot, Jupiter. FL
PMB ENGRG Coull. San Francisco. CA
PORTLAND CEMENT ASSOC AE Fiorato. Skokie. IL
PRESNELL ASSOC. INC DG Presnell, Jr, Louisville, KY
SANDIA LABS Library. Livermore, CA
SARGENT & HERKES, INC JP Pierce, Jr, New Orleans. LA
SAUDI ARABIA King Saud Univ. Rsch Cen, Riyadh
SEATECH CORP ; zroni, Miami, FL
SHELL OI1. CO E Doyle. Houston, TX
SIMPSON, GUMPERTZ & HEGER, INC E Hill. CE. Arlington, MA
TRW INC Crawford. Redondo Beach, CA: Dai. San Bernardino, CA: Engr Library. Cleveland, OH Rodgers.

Redondo Beach, CA

67



TUDOR ENGRG CO Ellegood, Phoenix, AZ
VSE Ocean Engrg Gp (Murton), Alexandria. VA
VULCAN IRON WORKS, INC DC Warrington. Chattanooga. TN
WESTINGHOUSE ELECTRIC CORP Library, Pittsburg, PA
WISS. JANNEY. ELSTNER, & ASSOC DW Pfeifer, Northbrook. IL
WISWELL. INC G.C. Wiswell. Southport, SC
WOODWARD-CLYDE CONSULTANTS West Reg, Lib, Oakland, CA
BROWN, ROBERT University. AL
BULLOCK. TE La Canada, CA
CHAO. JC Houston. TX
CLARK. T. Redding, CA
GIORDANO, A.J. Sewell, NJ
HARDY. S.P. San Ramon. CA
HAYNES. B. No. Stonington. CT
HEUZE. F Alamo. CA
KOSANOWSKY, S Pond Eddy. NY
NIEDORODA. AW Gainesville, FL
PETERSEN. CAPT N.W. Pleasanton. CA
QUIRK. J Panama City, FL
SPIELVOGEL. L Wyncote. PA
STEVENS, TW Dayton, OH
VAN ALLEN. B Kingston. NY

68



INSTRUCTIONS

The Naval Civil Engineering Laboratory has revised its primary distribution lists. The bottom of the

label on the reverse side has several numbers listed. These numbers correspond to numbers assigned to

the list of Subject Categories. Numbers on the label corresponding to those on the list indicate the

subject category and type of documents you are presently receiving. If you are satisfied, throw this card

away (or file it for later reference).

If you want to change what you are presently receiving:

e Delete - mark off number on bottom of label.

* Add - circle number on list.

& Remove my name from all your lists - check box on list.

* Change my address - line out incorrect line and write in correction (DO NOT REMOVE LABEL).

* Number of copies should be entered after the title of the subject categories you select.

Fold on line below and drop in the mail.

Note. Numbers on label but not listed on questionnaire are for NCEL use only. please ignore them.

Fold on line and staple.

DEARTENT OF THE NAVY1111_ ____

Naval Civil Engineering Laboratory
Port Hueneme. CA 93043-5003

____________________NO POSTAGE

Official Business NECESSARY
Penalty for Private Use. $300 IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 12503 WASH D.C.
POSTAGE WILL BE PAID BY ADDRESSEE

Commanding Officer
Code L34
Naval Civil Engineering Laboratory
Port Hueneme, California 93043-5003



DISTRIBUTION QUESTIONNAIRE
The Naval Civil Engineering Laboratory is revising Its Primary distribution lists

SUBJECT CATEGORIES 28 ENERGY/POWER GENERATION
29 Thermal conservation (thermal engineering of buildings. HVAC

1 SHORE FACILITIES systems. energy loss measurement. power generation)
2 Construction methods and materials (including corrosion 30 Controls and electrical conservation (electrical systems.

control, coatings) energy monitoring and control systems)
3 Waterfront structures (maintenance!deterioratior. control) 31 Fuel flexibility (liquid fuels, coal utilization, energy
4 Utilities (including power conditioning) from solid waste)
5 Explosives safety 32 Alternate energy source (geothermal power, photovoltaic
6 Aviation Engineering Test Facilities power systems, solar systems, wind systems, energy storage
7 Fire prevention and control systems)
8 Antenna technology 33 Site data and systems integration (energy resource data.
9 Structural analysis and design (including numerical and energy consumption data. integrating energy systems)

computer techniques) 34 ENVIRONMENTAL PROTECTION
10 Protective construction (including hardened shelters, 35 Hazardous waste minimization

shock and vibration studies) 36 Restoration of installations (hazardous waste)
11 Soil'rock mechanics 37 Waste water management and sanitary engineering
14 Airfields and pavements 38 Oil pollution removal and recovery

39 Air pollution
15 ADVANCED BASE AND AMPHIBIOUS FACILITIES
16 Base facilities (including shelters power generation, water 44 OCEAN ENGINEERING

supplies) 45 Seafloor soils and foundations
17 Expedient roads/airfields/bridges 46 Seafloor construction systems and operations (including
18 Amphbious operations (including oreakwaters wave forces) diver and manipulator tools)
19 Over-the-Beach operations (including containerization 47 Undersea structures and materials

material transfer lighterage and cranes) 48 Anchors and moorings
2 ?'01L sturage transfer and oistribution 49 Undersea power systems, electromechanical cables

and connectors
50 Pressure vessel facilities
51 Physical environment (including site surveying)
52 Ocean-based concrete structures
54 Undersea cable dynamics

TYPES OF DOCUMENTS
85 Techdata Sheets 86 Technical Reports and Technical Notes 82 NCEL Guides & Abstracts El None-
83 Table of Contents & Index to TDS 91 Physical Security remove my name


